A novel allele of myosin VIIa reveals a critical function for the C-terminal FERM domain for melanosome transport in retinal pigment epithelial cells.
نویسندگان
چکیده
Mutations in the head and tail domains of the motor protein myosin VIIA (MYO7A) cause deaf-blindness (Usher syndrome type 1B, USH1B) and nonsyndromic deafness (DFNB2, DFNA11). The head domain binds to F-actin and serves as the MYO7A motor domain, but little is known about the function of the tail domain. In a genetic screen, we have identified polka mice, which carry a mutation (c.5742 + 5G > A) that affects splicing of the MYO7A transcript and truncates the MYO7A tail domain at the C-terminal FERM domain. In the inner ear, expression of the truncated MYO7A protein is severely reduced, leading to defects in hair cell development. In retinal pigment epithelial (RPE) cells, the truncated MYO7A protein is expressed at comparative levels to wild-type protein but fails to associate with and transport melanosomes. We conclude that the C-terminal FERM domain of MYO7A is critical for melanosome transport in RPE cells. Our findings also suggest that MYO7A mutations can lead to tissue-specific effects on protein levels, which may explain why some mutations in MYO7A lead to deafness without retinal impairment.
منابع مشابه
Role of myosin VIIa and Rab27a in the motility and localization of RPE melanosomes.
Myosin VIIa functions in the outer retina, and loss of this function causes human blindness in Usher syndrome type 1B (USH1B). In mice with mutant Myo7a, melanosomes in the retinal pigmented epithelium (RPE) are distributed abnormally. In this investigation we detected many proteins in RPE cells that could potentially participate in melanosome transport, but of those tested, only myosin VIIa an...
متن کاملThe role of Rab27a in the regulation of melanosome distribution within retinal pigment epithelial cells.
Melanosomes within the retinal pigment epithelium (RPE) of mammals have long been thought to exhibit no movement in response to light, unlike fish and amphibian RPE. Here we show that the distribution of melanosomes within the mouse RPE undergoes modest but significant changes with the light cycle. Two hours after light onset, there is a threefold increase in the number of melanosomes in the ap...
متن کاملThe Ternary Rab27a–Myrip–Myosin VIIa Complex Regulates Melanosome Motility in the Retinal Pigment Epithelium
The retinal pigment epithelium (RPE) contains melanosomes similar to those found in the skin melanocytes, which undergo dramatic light-dependent movements in fish and amphibians. In mammals, those movements are more subtle and appear to be regulated by the Rab27a GTPase and the unconventional myosin, Myosin VIIa (MyoVIIa). Here we address the hypothesis that a recently identified Rab27a- and My...
متن کاملتمایز سلول های بنیادی پرتوان به سلول های اپیتلیوم رنگدانه دار شبکیه چشم،راهکاری برای درمان بیماری های تخریب شبکیه
Pluripotent stem cells as the cells with a capacity for self-renewal and differentiation into various specificcell types have been highly regarded in regenerative medicine studies. To repair the eye disease damages, thedifferentiation into retinal pigment epithelial cells of pluripotent stem cells has gained great importance inrecent decades because the inappropriate function of these cells is ...
متن کاملMyRIP, a novel Rab effector, enables myosin VIIa recruitment to retinal melanosomes.
Defects of the myosin VIIa motor protein cause deafness and retinal anomalies in humans and mice. We report on the identification of a novel myosin-VIIa-interacting protein that we have named MyRIP (myosin-VIIa- and Rab-interacting protein), since it also binds to Rab27A in a GTP-dependent manner. In the retinal pigment epithelium cells, MyRIP, myosin VIIa and Rab27A are associated with melanos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 29 50 شماره
صفحات -
تاریخ انتشار 2009